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SU MMARY

The electrical behavior of a semiconductor is critical

to its usefulness in a broad spectrum of applications ranging

from infrared sensitive detectors and microwave amplifiers to

high-speed/high-denisty integrated circuits. This behavior

is controlled by the presence of dopants, impurities, and

defects in the semiconductor and by its temperature.

Dopants, which are intentionally added in relatively large

concentrations (10i 5  to 10 18cm-3) to create desired

properties, must be precisely measured in the same samples as

the very low concentrations (less than 10 1 2 cm - 3 ) of unwanted

defects and impurities that generally degrade operating

characteristics. The only method available for

quantitatively measuring the small as well as the large

impurity concentrations and determining their identities is

based upon the Aall effect. The electrical transport

properties, namely resistivity, Hall mobility, and carrier

concentration are calculated as functions of temperature by

combining resistivity and Hall effect measurements. The

temperature dependent carrier concentration data is analyzed

to obtain the concentrations and identities of the

impurities. Concentrations of less than 5x10 1 1cm- 3 (1 part

in 1011) are measured routinely in silicon. The Hall

A, facility used for these measurements has been maintained and

employed as a general laboratory analysis tool while it has

*li



been simultaneously upgraded in all respects from data

collection through theoretical modeling and analysis.

The precision with which the material parameters can be

quantitatively extracted from measurements on the sample is

dependent upon the quality of the data and the accuracy of

the data analysis procedure. Temperature dependent Hall

measurements over a broad range (e.g. 20-4ooK) are necessary

to maximize the information contained in the data, which can

make collection of this data very tedious and time-consuming.

Automated computer controlled facilities are now routinely

* employed which do not dramatically reduce the time for a

complete data collection run (1/2 to 1 day), but they

introduce fewer errors and they do not become bored. This

computer control includes automatic setting of the sample

temperature with stability to a few millidegrees, adjustment

of the magnetic field, setting the sample voltages, and

collection of all current and voltage readings. The

collected data are used to calculate the carrier

concentration as a function of temperature. The identities

and concentrations of electrically active centers (dopants,

impurities, and defects) are then obtained by using another

computer program in an interactive mode which fits the

temperature dependent carrier concentration data with a

theoretical model by varying the impurity concentations and

activation energies as parameters until the difference

iv



between the data and the model is minimized. This fitting

process starts with trial values of the parameters introduced

into the minimization program by the operator. The ultimate

accuracy, and therefore the usefulness, of the results

depends upon the precision of the data, the accuracy of the

model, the performance of the fitting program, and detailed

knowldege of several physical quantities that vary with

temperature.

Through a planned and directed thrust over several years

to optimize the sensitivity and quantitative accuracy of the

Hall analysis tectinique, all facets of the process have been

examined for possible shortcomings and improvements have been

incorporated at every stage. This report was written

principally to document how information is extracted from

data by fitting it with a theoretical model. Successful

application of this technique, however, requires a folding

together of experiment and theory, therefore this report is

also a summary of the Hall analysis work already performed at

AFWAL/iiLP and an assessment of where further improvements

might be made. ,Accession Formight be made.NTrS- -GRA&I ----
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SECTION I

HALL EFFECT .EASUREMEITS

Semiconductors occupy the middle ground between the very

good conductors (metals) and the very poor conductors

(insulators). This intermediate position, electrically

speaking, means that they can be made to take on the

characteristics of metals or insulators by altering their

environment or preparation. For example, silicon becomes a

very good insulator at low temperatures, but can become -

conductor at room temperature. The most important property

that can be adjusted during preparation to control the

conducting behavior of a semiconducting sample is the

concentration of specific chemical impurities. Because the

electrical and optical properties are intimately related, a

semiconductor can also have its optical properties changed.

Therefore, in order to accurately describe and control the

properties of a semiconductor, the concentration and

identities of impurities must be accurately known. For

electrically active impurities this analysis is most

accurately performed using the Hall effect (References 1 and

2), which is superior to other experimental techniques

because it is quantitative as well as very sensitive and

accurate.
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1. MEASURED AND DERIVED QUANTITIES

The process of using the Hall effect to determine the

1X" impurity concentrations and impurity types in a specific

material begins by measuring the resistivity p and Hall

coefficient RH over a wide temperature range (see Section

1.2). These quantities are related to the carrier

concentrations and the carrier mobilities by (Reference 2)

p = e(ppp + n"n) (1)

RH = (P p 111p - nPnPHn)/[e(p]ip + nuln) 2 ], (2)

where p is the concentration of positive carriers (holes) in

the valence band, n is the concentration of negative carriers

(electrons) in the conduction band, p and n are the
pn

conductivity mobilities for holes and electrons respectively,

VHp and PHn are the Hall mobilities for holes and electrons,

and e is the charge on the electron. If conduction in the

sample is dominated by one type of carrier, say holes, then

these equations reduce to

-1 epi
p 3)

R11  VjHp/(ep~p) r/(ep), 4)

2
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where r Hp p/Pp is the [all scattering factor (commonly

called the "r-factor"). The carrier concentration and

mobilities may be computed using

p = r/(eRH) (5)

P11p 
=  RH/P (6)

Hp = IHp/r (7)

Unfortunately, only RH and P can be measured directly which

means that r must be known in order to calculate the carrier

concentration and conductivity mobility precisely. The value

of the Hall scattering factor, r, can be measured over only

limited ranges in a few cases, and most commonly it must be

calculated or estimated. Its value is near 1 and often this

has been the estimate used, but recent calculations and

measurements (Section V.3) have improved our knowledge of

r(T) dramatically.

If measured over a wide temperature range, the carrier

concentration data contain information on both the identities

of electrically active impurities present in the sample and

the concentrations of those impurities. In this report, the
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Hall experiment for collecting the carrier concentration data

and the computer program for fitting these data will be

described. Use of the program to determine the

concentrations and chemical species of the impurities present

in a sample will be explained. Recent theoretical advances

in the calculation of the Hall scattering factor leading to

improved determination of the carrier concentration will be

discussed. The mobility data can be used to give an

indication of the presence of electrically inactive

impurities present in the sample and provide information on

the crystalline quality of the sample. These data are

quantitatively less useful at present because of the greater

complication of the theory and the correspondingly greater

difficulty in applying it to a concrete situation. Recent

theoretical advances have renewed hope that these

measurements, too, can be used to characterize samples.

2. THE HALL EXPLRI:LENT

fhe Hall experiment involves measuring the voltage at

several locations on a sample that is held at a precisely

. controlled temperature when that sample is subjected to a

constant current in the presence and absence of a magnetic

field. The sample must be mounted in thermal contact with a

fixture which in turn is mounted between the pole pieces of a

magnet. The temperature may be varied over the range

4.2 - 400K and the magnetic field must te variable up to at

4

%.
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" I

H

Figure 1. Schematic Hall effect measurement. The letter I
denotes the current induced in the sample by an
external power supply, H is the magnetic field
applied perpendicular to I, V is the Hall voltage
measured perpendicular to I Lnd H, and d is e
(positive) charge deflected by the Lorentz force
which is also perpendicular to I and H. The
sample thickness and width are t and w

respectively.
P3

least several tenths of a Tesla.

A generalized Hall experiment is illustrated in Figure

1. A current, I, is passed through the sample and the Hall

voltage, VH, is measured. Initially, the magnetic field is

off, II 0 0, in which case VH 0 0. When the magnetic field is

applied, the moving charges are deflected by the Lorentz
,a-

force in a direction mutually perpendicular to I and H until

they experience no net force and steady-state is reached.

Deflection of the charges creates a charge concentration

5



gradient across the sample and therefore an electrostatic

field. At steady-state, this electrostatic field is called

the Hall field and its force on the charges balances the

Lorentz force. The Hall voltage, VH, divided by the distance

between the contacts, w, gives the value of the Hall field.

The Hall coefficient RH, is defined as the proportionality

constant between the current and Hall voltage and is

therefore expressed in terms of directly measured quantities

RH = (VH/I)(t/H) (8)

including the sample thickness, t. Measurement of the

resistivity, p, is illustrated in Figure 2. The resistivity

is the resistance of the material after correction for the

dimensions of the sample and can therefore be expressed in
a.

directly measurable quantities,

p = (V/I)(wt/1), (9)

where V is the voltage measured between contacts a distance

apart wher a current, I, is passed through the sample with

thickness t and width w.

At low temperatures, the carrier concentration in

semiconducting samples decreases due to "freeze-out" which

generally results in very high sample resistances and

6
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Figure 2. Schematic resistivity measurement. The letter I
denotes the current induced in the sample by an
external power supply and V is the voltage
measured between two contacts spaced a distance
apart. The sample thickness and width are t and
w, respectively.

therefore small electrical currents. To avoid distorting the

voltages measured at the sample contacts (due principally to

contact resistance), the current drain by the meters must be

Much smaller than the current flow through the sample. This

requires meters with very high input impedances that are at

least one hundred times greater than the sample resistance.

To avoid the noise problem introduced by unnecessarily long

RC (resistance-capacitance) time constants, the leads between

the sample and meters must have a cable capacitance that is

operationally equal to zero. This requirement is satisfied

(Reference 3) by connecting electrometers to the sample

7



heater coil

beryllium oxide wafer

sample

copper block _

magnetic field

radiation shield
heater coil

cold helium gas

Figure 3. Diagram of the Hall sample holder showing the
configuration used for fine temperature control.

voltage probes with triaxial cables and using the unity gain

electrometer outputs to drive the inner guard shields to the

same potential as the probes. This permits taking reliable

voltage readings on samples for which the resistance exceeds

10 1 2 ohms. Sample currents at these resistances are on the

order of 10- 1 1amps and sensitive electrometers must be used

to measure these quantities as well.

For temperature uniformity and control, the sample is

held in thermal contact with a beryllium oxide wafer mounted

% on a copper block as shown in Figure 3. The copper block is

in a gently flowing stream of cold helium gas, which acts as

%%

a low temperature heat sink. The whole sample region is

8



covered with a radiation shield and is not in direct contact

with the flowing helium. A heater built into the copper can

hold the temperature stable to within a few millidegrees.

The heater is operated by a closed loop proportic ial

controller which uses either a platinum or carbon-glass

resistance thermometer for regulation, but the temperature is

actually measured by an independent silicon diode thermometer

while the magnetic field is off. The sample holder is part

of a liquid helium dewar that is mounted so that the magnetic

field is perpendicular to both the sample face and the

current flow through the sample. For a given sample, one of

two general sample shapes is used: either the Hall bar or.or

the van der Pauw.

a. Hall Bar

4 The Hall bar shape most commonly used is that shown

in Figure 4. Samples are cut from a wafer using an

4 ultrasonic "cookie cutter". Variations on this shape are

5' used for special cases, but they are all physically

equivalent. To collect the resistivity data, a current I is

passed through the sample using contacts C and a

voltage V is measured between contacts R 1 and R2. From

Equation 9 above, the resistivity is given by

p (V/I)(wt/1), (9)

.4,
4..9



HB, 0H

22

I<

.p

Figure 4. Drawing of a Hall bar showing the connections used
to measure the resistivity (top) and Hall

coefficient (bottom).

To measure the Hall coefficient, a magnetic field, H,

(perpendicular to the page in Figure 4) is applied and a Hall

voltage V I is measured across the sample between contact H

. and the contact R2 . From Equation 8 above, the Hall

coefficient is given by

RH = (VH/I)(t/H). (8)

F rors due to thermoelectric and thermomagnetic effects as

well as to small inhomogeneities and geometrical

"'1
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4 56

Figure 5. Illustration of the Six Possible Configurations of
Electrical Connections Used to Measure the
Resitivity (1,2,3,4) and Hall Coefficient (5,6) of
a van der Pauw Sample.

irregularities are minimized by collecting data for all

combinations of current and magnetic field reversals and then

averaging suitably.

b. Van der Pauw

Like the Hall bar, the general van der Pauw

(References 4 and 5) shape must be homogeneous and have

uniform thickness, but it also must contain no holes and have

four point-size contacts on the periphery. Data collection

and analysis are much simplified if a symmetrical shape is

11



used and the contact size restrictions are greatly relaxed if

some form of the "clover leaf" is chosen for the sample

h shape, Figure 5. The slots in the clover leaf effectively

restrict the sample's measured area to the central portion --

a small area about 2mm square -- and electrically place the

contacts far from this active region. The advantage is

twofold: first, the contacts can be made much larger without

introducing error (Reference 6) and second, a small sample

area permits sampling of wafers with higher spatial

resolution.

Data collection using a van der Pauw sample differs from

the Hall bar primarily in the fact that each contact plays

the role of both voltage probe and current connection during

the necessary switching process that is shown schematically

in Figure 5. 2Ieasurements are required at only three of the

six configurations, say 1, 2, and 5 or 3, 4, and 6. For the

1 , 2, 5 set , one puts the current I through the sample and

measures the voltage V, in position 1, V 2  in position 2 and

then V 5 with the magnetic field on in position 5. To reduce

these measurements to resistivity and Hall constant, one must

assume that V5 is zero when H is zero. This is rarely the

case, and so, in analogy with the Hall bar case above, V

V2, and V5 are remeasured and suitably averaged with the

values obtained when the current and/or the magnetic field is

reversed. Therefore, a complete set of data at each

* 12
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temperature consists of V1 , V2 , V5 , I and H. For more

complete averaging, equivalent data can be taken in the other

positions and would include V3, V4, V6, I and H.

The resistivity may be calculated (References 4 and 5)

using

P = wt(R 1  + R2 )f(R 1/R 2 )/(21n2), (10)

*where t is the thickness of the sample and R, and R2 are

given by

4-

' R I  = Vl/IV1/I(11)

R2 = V2/I.

The function f(R 1,/R2 ) is a dimensionless quantity dependent

only upon the ratio of the resistances measured for

configurations 1 and 2 and equals one when R1 equals R2 .

This is the case for an electrically isotropic geometrically

symmetric sample. The ratio RI/R 2 is monitored as a function

of temperature and it should remain constant. If it does

not, material inhomogeneity is implied.

The Hall constant is found using

RH = (AV 5 /I)(t/B), (12)

S13
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where

AV- V5 (13) -V 5 (B=O). 13
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SECTION II

THE CHARGE BALANCE EQUATION

The carrier concentration in a semiconducting sample is

determined (References 2 and 7) by assuming charge neutrality

in the sample, a condition expressable in terms of the charge

balance equation:

p + IN + n + fN- (14)

Here, p denotes the concentration of holes (positive

carriers) in the valence band of the sample, n the

concentration of electrons (negative carriers) in the
,,.

conduction band of the sample, NDI the concentration of

positively charged (ionized) donors (typically group V

elements in silicon) in the sample, and NAi the concentration

of negatively charged (ionized) acceptors (typically group

III in silicon) in the sample. The sums are over the

different species of donors and acceptors.

For a silicon sample more heavily doped with acceptors

*than donors, the number of free electrons in the sample is

negligible at and below room temperature and all of the

donors in the sample end up being positively charged because

*their outer electrons have moved away to acceptor sites,

compensating them. The sum over donors may be replaced by a

- "N ' .



single number N D, which represents the total contribution of

all of the donors in Equation 14. Then, the electrical

conductivity is dominated by the holes and the sample is said

to be p-type. For this case, the charge balance equation

takes the simpler form:

p + NNAi D N A i(15)

If Fermi statistics are applied to the acceptors, and

Boltzmann statistics are applied to the concentration of

holes in the valence band (this approximation is discussed in

Section V.1.b), Equation 15 takes the form:

P + N4D  7NAi/(I + p/¢i) (16)

where

Di = tlvl(lgijexp(EAij/kn)) (17)

Here, the sum over j includes the ground state and the

excited states of the impurity. The degeneracy of the state

is given by gij and the (positive) binding energy of the

state is given by EAij and is measured from the valence band

edge toward the conduction band. The density of states in

the valence band is denoted by Nv.

16

4.%



The carrier concentration p(T) is measured as detailed

above, and the parameters N(T), gij for all of the states,

and EAi j for the excited states are found from theoretical

analysis and other experiments. By fitting the solution of

Equation 16 to the measured p(T) data, the value of ND, and

the values of NAi and EAiO (ground state ionization energy,

denoted below by EAi) may be determined. That is, the

concentration of donors, the concentration of each acceptor,

and the ionization energy of each acceptor are found. The

ionization energy of an acceptor serves to identify it. It

should be noted that unless the sample is heavily doped or

the ionization energy EAi is very small, the excited states

contribute very little to the sum in Equation 17 and they may

therefore be safely neglected. Then, the temperature

dependent function (Pi takes the form that is applicable in

most cases:

Pi = Nvexp(-EAi/kT)/gio. (18)

The degeneracy of the ground state, gio can be treated as an

unknown parameter during the fitting process so that it may

be determined from the p(T) data. When this test gives

non-integral values for giO, it may indicate that the excited

states are contributing significantly in Equation 17.

17
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1. S3IIGLE ACCEPIOX SOLUTION

The graph in Figure 6 shows the typical form of the hole

concentration data (Reference 8) for a sample with only one

type of acceptor. Note the three distinct portions of the

curve. At the highest temperatures on the left, the hole

concentration is a constant independent of temperature. This

"exhaustion region" develops when the temperature is high

enough to cause thermal ionization of all acceptors in the

sample, then, t A in Equation 15 is just NA and the hole

concentration is independent of temperature:

p = NA - ND. (19)

At the lowest temperatures oP the right, in the "freeze out

region," the carriers become bound to the acceptors and the

hole concentration is given by:

p A  - nJD)P/ND exp(-EA/kT). (20)

This produces the long linear section of the curve at low

temperatures with a slope related directly to the ionization

energy of the acceptor. Between these two temperature

extremes, there may be a linear section of the curve with a

slope of half the low temperature slope where the hole

concentration is

19
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P Z VNAD exp(-EA/2kT) (21)

and the extent of this intermediate region depends upon the

ratio NA/ND. The half-slope region becomes very long for

large values of the ratio NA/ND and the break between this

region and the low temperature region occurs for a carrier

concentration near the value N

Equations 19, 20, and 21 may be used as a guide when

examining graphs of carrier concentration data. The

logarithm of the carrier concentration is plotted versus

1000/T to straighten the graph in the intermediate and low

temperature regions whe.e the data are exponential. The

presence of a clearly visible intermediate temperature region

in Figure 6 indicates that the concentration of donors is at

least an order of magnitude less than the concentration of

acceptors in this sample and the position of the break to the

low temperature slope gives an estimate for ND. The height

of the curve in the exhaustion region gives an approximate

value of 3.Ox10 1 6 /cm 3 for the concentration of acceptors, and

the slope of the low temperature data give an ionization

energy of 0.076 eV which is the approximate value for

gallium. This quick scan of the data gives important

information, namely that gallium is most probably the

dominant impurity at a concentration of about 3.0x10 1 6 /cm 3 ,

20
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and that the net concentration of donjrs is roughly

3x10 1 3 /cm 3 . A detailed computer analysis of this sample will

be presented in Section III.

When more than one type of acceptor impurity is present

in the sample, the curves take the same general form, and

while the slopes of the sections may be either proportional

to the ionization energy of the acceptor or half that value,

the interpretation of the curve is much more difficult. In

this case, a nonlinear fitting program is needed to

disentangle the information from the various portions of the

curve. Adding to the complication is the fact that ND and

the NAi include only impurities which contribute to the

measured p(T). "Invisible" impurities may be present which

form defects that are not electrically active as well as

three categories of donors and acceptors that are not

detectable: (1) deep acceptors which have an ionization

energy EAiO that is greater than the highest experimental kT

and are therefore not ionized, (2) shallow acceptors with

ionization energies less than the energy of the lowest

partially compensated acceptor that are overcompensated by a

factor of 5 or more, and (3) the portion of ND required to

•exactly compensate the invisible shallow acceptors in

category (2). The measured portion of ND is referred to as

the net donor concentration. In other words, when a complete

Hall analysis is performed, it is possible that the sample

21



may contain some acceptor centers, both shallow and deep, and

some donor centers in addition to those detected. This is

the case for silicon samples intentionally doped with indium

which always contains some boron. If any of the boron is

electrically active (i.e. undercompensated) extra donors may

be introduced intentionally to overcompensate the boron and

therefore make it electrically inactive in order to reduce

the low temperature carrier concentration.

2. MULTIPLE ACCEPTOR SOLUTION

Data from a sample with more than one type of

e electrically active acceptor (Reference 9) are shown in

Figure 7. The more complicated shape of this curve indicates

that there are multiple acceptors in the sample. A simple

fit to these data indicates the presence of two acceptors

whose energies are determined by the straight line portions

of the data. The steepest portion of the curve at high

temperature has a slope indicative of the presence of indium

in the sample, and the less steeply sloped portion at low

temperature irdicates the presence of aluminum. The detailed

shape of the curve, however, indicates the presence of a

third acceptor with an ionization energy between that of

indium and aluminum. This acceptor is known as indium-X and

including it in the analysis improves the fit to the data.

*1

It is a very general property of carrier concentration

22
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data that the detailed shape of the curve contains

information beyond that available in just the slopes of the

straight line sections and the absolute height of the curve.

* This is clearly seen by comparing the one acceptor fit to the

data in Figure 6 with a one acceptor fit to the same data

multiplied by a factor of 10 as shown in Figure 8. The

higher values of the data require higher values of the

impurity concentrations, but even so, these higher values

cannot reproduce the detailed shape of the curve: the shape

retains the information that the true impurity concentrations

are an order of magnitude lower. Therefore, even in the

simple one level situation, the maximum amount of information

can only be extracted from carrier concentration data by

performing a computer fit to them. However, if a particular

data set contains only a single slope with no bends or

structure, then the data can be shifted in magnitude with no

adverse effect upon the fit and the only information

contained in the data is one energy level value.

For the case of two acceptor species, the exhaustion

region again develops at high temperatures where all of the

acceptors of both types are ionized. Then, Equation 15 has

the solution

p NA + IIA2 - (22)
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For temperatures immediately below the exhaustion region, the

solution of the charge balance equation takes the form

lP A 1 (23)

where the acceptor listed is the one with the deeper ground

state (greatest absolute value of the ionization energy), and

the slope in this region is E.A1/2 If ND is greater than

NA2, the shallower acceptor is overcompensated, and the

carrier concentration in the low temperature regime is

p (N Al + - ) /(N - t- A2) (24).-.' P : (NAl + A2  - DD - A

giving a slope of E This looks exactly like the one

accceptor solution with an effective number of donors given

by ND - NA 2 . This important result, namely that overcompen-

sated shallow acceptors are not "seen" in the data was

remarked upon above. Note that the concentration of donors

found in the analysis is actually the concentration of donors

minus the concentration of the overcompensated shallow

acceptors.

If the shallo'wer acceptor is exactly compensated, i.e.

D - tA2, the solution for high and intermediate temperatures

stays the same as above, but the solution at low temperature

takes the form

J. 26
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Figure 9. Hole concentration versus 1O00/T for a sample doped with two

acceptor species. For the fit shown a reduced chisquare of 1.8

was obtained assuming r 1 1, a net donor concentration of

4.4xlO12/cm3 and a concentration of 5.7 x 10 14/cm3 for the shallow

acceptor. 27
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4.

P A A1 lIP2/"'D , (25)

and the low temperature slope is (EAl + EA2)/ 2 . If the

shallower acceptor is undercompensated, i.e. ND less than

N A 2 , the solution at high and intermediate temperatures is

again the same as above, but the solution at low temperatures

is

p = (NA 2 - ND)'2/ND (26)

giving a low temperature slope of EA 2 "

3. ALIASING

If the value (EAl + EA2)/ 2 is near the ionization energy

of another impurity, say E A3 two different fits to the data

will be possible, one with the impurities 01 and 03 showing

* up in the fit, and one with impurities #1 and #2 showing up,

but where the concentration of donors is almost exactly equal

to the concentration of acceptor impurity #2. This

-, p03 ibility of the aliasing of one impurity by another is

shown in Figures 9 and 10. Both show the same data

(Reference 10), but the first shows a fit with a shallow

acceptor that is undercompensated, while the second shows a

fit with a shallow acceptor that is almost exactly

compensated. Note that in both of these cases, the presence

29
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and character of the deeper acceptor is unambiguous. The

only question to be determined is whether the shallower

acceptor is closely compensated or not. Larrabee (Reference

11) performed a series of experiments on indium doped silicon

to determine whether the indium-X acceptor was the result of

close compensation of a shallow level. By varying the donor

concentration, he was able to show that close compensation of

a shallow level could not explain the data. It is a curious

fact that several acceptors have ionization energies near the

-average of the binding energies of two other acceptors

(Reference 12). It is especially important to perform a
,J.

careful analysis such as that done by Larrabee for these

levels (References 13 and 14).

-3
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SECTION III

DETERMINATION OF FIT QJALITY

The quality of a computer fit to experimental data can

be judged in a number of ways. The most important of these

is a quantitative statistical measure called the reduced

chisquare which depends on the mismatch between the values of

the fitting function and the data points. Though it is a

quantitative indicator, it gives only aggregate information

S about the fit as a whole and does not provide detailed

information about the relationship between the shape of the

curve and the trend of the data. Detailed information of

this type may be obtained by examining a graph containing the

data points and the curve produced by the fitting function to

see whether the curve faithfully reproduces the bends and

points of inflection of the data. It may be necessary as

well to examine numerical values of the data and fit to look

for systematic or correlated errors which are too small to

see on a graph. When the fit seems to be a good one

according to these methods, it may still be producing

physically unreasonable values of the fitted parameters, a

sign that the fit is a poor one. Even if the values of the

parameters are reasonable, one or more of the parameters may

-' be determined only approximately by the fit. In this case,

the data is not constraining the parameter(s) strongly and

the fit is said to be "Mushy", meaning that the value of

31
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chisquare is only weakly dependent on the value of the

parameter(s) in question. In this section, each of these

measures will be examined in turn to show the information

they give concerning the quality of a fit and the action

which may be taken to improve the fit, if needed.

1. REDJCED CHIS:JARE

The fitting of a theoretical formula with adjustable

parameters to a set of data is done by varying the parameters

so as to minimize a quantity that measures the distance of

the fitting curve from the data points. The appropriate

measure is called chisquare and is defined by (Reference 15)

N

X 2 [yi - f(xi)] 2 /ai2  (27)

where N is the number of data points, yi is the ith data

value with standard deviation 1i, and f(x i ) is the value of

the fitting function for the ith data value. If a fitting

function could be found that went through all of the data

points exactly, the value of chisquare would be zero.

Ordinarily however, the data are randomly displaced

about the curve due to the finite precision of the experiment

and the minimum value of chisquare is not zero. A fit using

a function f(xi) is judged to be a poor one if it produces a

"large" minimum chisquare and is judged to be good if it

32
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produces a "small" minimum chisquare. If there are n free

parameters in the fitting function, we might expect that the

fitting function could go through n of the data points

exactly and miss the rest by about one standard deviation.

As an estimate, then, the minimum value of chisquare would be

approximately

X 2 'I-n (28)

Because this minimum value depends only on the number of data

points and the number of free parameters, the significant

quantity is not chisquare, but chisquare divided by N - n,

4 .

X 2 X2/(N- n) (29)

called the reduced chisquare. Its minimum value should be

about one, and therefore, a poor fit is one with a reduced

chisquare much larger than one.

In the fits shown in this report, the standard

deviation, ai, is assumed to be 3% of the data value:

C i  = 
0 0 3yi .  (30)

If the standard deviation is larger than that given by

Lquation 30, or if the fitting function is inappropriate for

33
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the data, the smallest value of the reduced chisquare will be

greater than one. On the other hand, if Equation 30

overestimates the deviation of the data and if the theory

describes the data well, the reduced chisquare will be less

than one. When the minimum reduced chisquare is too large

for a given fit, parameters may be added to the fitting

function to improve the fit. For the hole concentration data

discussed here, this may be accomplished by adding more

acceptor levels to the fitting formula. The data in

Figure 7, for example, are better fit assuming that there are

three rather than two acceptor species doping the sample.

One might think that adding extra parameters in the

fitting function could always improve the fit and decrease

the minimum value of the reduced chisquare. While the

minimum value of chisquare itself will decrease as a result

of adding extra parameters to the fitting function, the

minimum value of the reduced chisquare will not get smaller

because the value of the denominator in Equation 29 also

decreases as n is increased. As parameters are added during

a fitting session, the minimum reduced chisquare will first
.4

decrease and then increase, having a lowest value as a

function of n. For this lowest value, the maximum

information is extracted from the data. Practically

speaking, parameters are added so long as the results are

physically reasonable.

34

, p : + + + ,+ + + - : _



TABLE 1

RESULIS FOR THE DATA IN FIGURES 4 AND 6

* Net Donor Acceptor Acceptor Reduced
Concentration Concentration Energy Chisquare

(cm- 3 ) (cm- 3 ) (eV)

Fig. 6 7.17xi0 1 3  3.17x10 16  0.071 1.3

Fig. 8 8.46x10 1 4  7.16x10 17  0.066 128.2

Compare the values in Table 1 for the reduced chisquare

for Figures 6 and 8. The fact that the value for Figure 6 is

near 1.0 is an encouraging indication that this is a good fit

to good data, whereas the large value for the same type of

fit to the lOX data in Figure 8 leads to a rejection of this

fit without giving information as to the cause of the

problem.

The use of the reduced chisquare to measure the quality

of two different fits to the same data is illustrated in

Figures 11 and 12 with (respectively) a two acceptor and a

three acceptor fit to the data (Reference 16). The unusually

low value of the reduced chisquare for the three acceptor

fit, 0.15, is an indication of the excellence of the data.

The fact that the reduced chisquare for the three acceptor

fit is less than the reduced chisquare for the two acceptor

fit, 3.65, lends statistical support to the hypothesis that

there are actually three different acceptors in the sample.

This reduction in chisquare does not always happen, for as

35

ae



'-7

(I

5%.'

-. 5.uar of 3.5

*x*

.3 6

zt

.'- Jo ~l

" 000/I' (K -I
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acceptor species. The two acceptor fit shown has a reduced
chisquare of 3.65.
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discussed above, increasing the number of parameters by

increasing the number of acceptors in the fitting process may

not lead to a smaller reduced chisquare.

2. GRAPHICAL CO IPARISON AND ERROR ANALYSIS

The vi ue of the reduced chisquare does not tell the

whole story about the quality of a fit. If a perfect theory

is used to fit a set of data that has only random error in

it, the minimum value of the reduced chisquare would reflect

only the residual random error in the data. That is, the

data points would be displaced above and below the curve

randomly. In a realistic situation, however, there will be

systematic error in the data and perhaps the theory. Then

the minimum value of the reduced chisquare has two

components: a part due to the random error in the data which

shows up as described above, and a part due to the systematic

error which shows up as a correlated displacement of the data

points above or below the curve.

For example, the fit shown in Figure 8 is known to be

poor because of the high minimum value of the reduced

chisquare. The poorness of the fit may be confirmed by

comparing the fitted curve to the data points over a range of

temperatures. The difference between the data and the fit is

systematically either high or low over a temperature range,

the largest percent difference being about 30%, and this is

38
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evidence that the poor fit is caused by systematic error. In

this particular case, the poor fit was caused artifically by

multiplying the accurate data of Figure 6 by a factor of 10

to produce the data in Figure 8. In other words, a

correlation of the error from point to point is an indication

of systematic error, the amount of systematic error being far

larger than the irreducable systematic percent difference

between the data and the best fit.

4.

Systematic error in an experiment can come from a wide

variety of sources. Experience leads to the identification

of the temperature, magnetic field strength and sample

thickness as the greatest experimental sources of systematic

error in Hall effect experiments. If the theory is

approximate, it will contain systematic errors and the fitted

values will differ from the experimental values for this

reason. For example, as noted above, the usual estimate for

4the value of the Hall scattering factor r is to take r = 1.

It is known that r can differ from this value by as much as

30%. In Table 2, the fitted values are compared to the

experimental values of the carrier concentration for the data

in Figure 6. Note that even for these data there are small

but systematic deviations of the fitted values from the

experimental values over wide temperature ranges. This leads

to the conclusion that either the theory or experiment (or

both) has residual systematic error in it. It can be very
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COIPAPISOh OF DATA AND FIT FOR FIGURE 6

Carrier Carrier
Concentration Concentration Percent

T Data Curve Difference

(K) (cm- 3 ) (cm- 3 )

30 5.10x10 7  5m36x10 7  2.5

32 3.26x10 3  3.46xI0 8  3.0

36 7.05x10 9  7.20x10 9  1.0

40 8.81x10 1 0  8.59x10 1 0  -1.3

45 1.07x10 12  1.01x10 12  -2.9

i." 55 2.94x10 13  2.89xi0 1 3  -0.8

65 1.69x,0 1 4  1.66x10 14 -0.9

80 7.76x10 1 4  7.53x,0 1 4  -1.5

100 2.7-x10 15  2.62x10 15  -2.0

130 8.19xi0 1 5  8.00xi0 1 5  -1.2

160 1.48x10 16  1•50x10 1 5  0.7

200 2.21x10 16  2.27x00 1 6  1.3

250 2.66x10 1 6  2•7 x10 16  2.2

"A 350 2.92x,0 16  3.07x,0 1 6  2.5

beneficial, therefore, to expend considerable effort

improving the experiment and the theory so as to decrease the

*amount of systematic error. In Section V, efforts to improve

the state of the theory will be discussed.

The difference between the fits in Figures 11 and 12 can

be seen in the region near a carrier concentration of

0114 cm-3. The two level fit in Figure 11 is systematically

lower than the data in that region, whereas the three level

'a.
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a

fit in Figure 12 follows the data more closely. Clearly, the

fit shown in Figure 12 is a better one physically (following

the shape of the data more closely) as well as statistically

(giving a significantly lower value of the reduced

chisquare). Note that this conclusion depends strongly on

the accuracy and the density of data points in that region.

3. PARA;:ETER VALUES

The ultimate measure of the quality of any fit is the

value of the parameters produced by the fit. No matter how

low the chisquare or how well the curve follows the twists

and turns of the data, if the values of the fitting

parameters are physically unreasonable, the fit must be

rejected. One cause of poor results is systematic error.

When systematic error is present in the data or the theory,

the fitting program distorts the values of the parameters so

as to achieve the closest possible alignment between the

curve representing the charge balance equation and the

erroneous data. For this reason, the curve in Figure 8 is

not a factor of 10 below the data (which is too high by a

factor of 10), and the penalty for achieving even the poor

fit shown is the multiplication of the acceptor concentration

by a factor greater than 20 and a reduction of the ionization

energy by 7% (See Table 1).

A poor value for a parameter may also be produced in a
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"mushy" fit where the chisquare value is insensitive to the

value of the parameter. This may be seen in data such as

that in Figure 7 where a third impurity was required for a

good fit, but the ionization energy of the impurity was found

to have a poor value because the fit to the data is not very

sensitive to that ionization energy. The solution here is to

perform the fit with the ionization energy fixed at a value

determined in another way, e.g. from optical measurements.

Fixing the value of a poorly determined parameter is a

convenient way of improving "mushy" fits even when the fitted

values are not so far off the mark. Alternatively, there may

just not be enough noise free data to determine a certain

parameter well. In this case the scatter must be reduced or

more data is required, usually over a wider temperature range

or more closely spaced in temperature, in order to delineate

bends and inflections better, thereby increasing the

sensitivity of the experiment.

Occasionally, a fit may produce an unlikely value of a

parameter because the fitting routine has found an alternate

minimum of chisquare in the parameter space. In the

situation shown in Figures 9 and 10, the fitting function

produced good fits with two quite different sets of

'V parameters and the fitting program found two independent

local minima of chisquare in the parameter space. In order

to insure that the "true" minimum has been found, it is
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necessary to search for alternative minima in the parameter

space and then examine the quality of the fit that each

produces. Often, one fit is preferred because it gives a

lower chisquare, because it follows the data better, or

because it produces more physically realistic values of the

parameters. For the data in Figures 9 and 10, the preferred

fit is the one with a slightly larger value of the reduced

chisquare. Both fits follow the data equally well, but the

preferred fit has parameter values that are more reasonable

physically. Subsidiary minima may be eliminated by fixing

the value of one or more parameters when their values are

known or by performing a series of experiments (Reference

11).

Theoretical systematic error can cause intriguing

correlations of parameter values. For example, if the Hall

scattering factor is taken to be 1 when fitting Si:In data,

. the ionization energy of the indium acceptor will depend on

the amount of compensation of the indium. That is, if the

indium acceptor is uncompensated, the indium ionization

,. energy will be determined from the intermediate temperature

range where the slope of the carrier concentration curve is

related to one-half of the ionization energy, and a value in

the range 0.165 - 0.170 eV is found. If, on the other hand,

' the indiuii acceptor Is partially compensated so that the

graph shows the low temperature slope related to the full
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ionization energy, the value found is in the range 0.153 -

0.159 eV (References 11 and 17). Use of the empirical Hall

scattering factor discussed in Section V.3.b as a correction

for indium doped samples improves this state of affairs by

reducing the indium ionization energy in samples with low

compensation. As a consequence, the concentration of indium

found by the fit is also reduced in agreement with the

concentration found by other techniques (References 17 and

18). Neglecting the Hall scattering factor can cause an

error in the indium concentration as large as 100% and an

error in the in. ium ionization energy of about 7%. The only

unambiguous indication of this error in the Hall data itself

is the unusually high value of the indium ionization energy

in some r = 1 fits. without correcting for the effect of the

Hall scattering factor or having other data, it can be

. difficult to tell just how far the computer-produced

parameter values are from the true parameter values.

If accurate values are known, the values of the

parameters produced in a computer fit can be a very sensitive

-. test of the quality of the data and/or the theory. For

example, in Figure 8 above, a factor of 10 error in the data

translated into a maximum of a 30% difference between the

curve and the data for the best fit, whereas the impurity

concentation was in error by a factor of 20 and the

ionization energy by 7%. Also in Figure 9, a 30% error in
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the theory due to the Hall scattering factor was reduced to

about a 5% difference between the fit and the data points for

an error of about 7% in the energy and 100% in the indium

concentration. The error in the indium concentration for

this sample could be reduced if data in the exhaustion (high

temperature) region could be added. WJhen it is available,

data in all three temperature regions overdetermine the

parameters in the fit via Equations 19, 20 and 21.

Systematic error is most often revealed more in terms of a

larger value of the reduced chisquare and less in terms of

parameter error.

45

• -. . . . . -.,.-, .,.. . ..-, , -. . . ' - . - ,. "



SECTION IV

THE FITTING ROUMINLS

The computer program used to fit the carrier

concentration data makes use of the computer subprograms

(CURFIT and tIATINV) in the book by Bevington (Reference 15).

It finds the minimum value of chisquare by searching for the

point in the parameter space where the gradient of chisquare

is zero.

The program may be understood most easily if the

discussion is confined to the case in which only two

parameters, a 1 and a2 , are varied in the fit. The N data

points (xiYi) are fit using the fitting function f(al,a 2,xi)

and Equation 27 for chisquare,

N

X 2 Ey [Y - f(al, a2, xi)] 21/°i 2  (31)

is minimized to find the best value of the parameters a1 and

S 2 .  The optimum value of these parameters occurs at the

point in the parameter space where chisquare is a minimum.

We denote this point by (a 1 (min),a 2 (min)). At the minimum,

the derivative of chisquare with respect to the parameters is

zero,
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4.

aa = 0 (32)
)~1al 1a (mini)

a _ 2 I = 0 ,

3 a2 a2 (min)

whereas away from the minimum the gradient will not be zero,

but will point uphill toward larger values of chisquare.

Sufficiently close to the minimum, the value of the

0derivative of chisquare may be approximated by the first two

terms in a Taylor's series exapansion,

2
2 22

0 aakl ( ) C + (aj(min) - ajil aa. (3="' )k a k (min)kk

k j:1

where the first and second derivatives of chisquare have the

form

"p. N

- 2- [yi-f(al a2 txi))- (34)
S kk

22N I a f2
2 = 2 1 a - a [Yt- f(a a2 x )] a aa f 35)

~aa 2ka 2 xi 3aa
k -~ k jk aj,€ 1

Note that the vector B points downhill toward smaller values

of chisquare in the parameter space and cz is related to the

curvature matrix. Substituting these definitions into

Equation 33 brings it to the form

47

4."J.



I' 2

0 2 -20 i + I [aj(min) - aiJ2aij (36)

j=1

which may be solved for the optimum value of the parameters

2

a.(min) ai + (a (cE) 1 3 i. (37)

Because this equation is approximate, it does not in fact

produce the optimum value of the parameters given any

starting value, but produces a value closer to the optimum

than the starting value. The starting point (ala2) in the

parameter space is guessed, and the poorer that guess the

worse the result produced by Equation 37. And so, Equation

37 should be viewed as a prescription for stepping toward the

minimum rather than directly to it.

2

a(new) = aj(old) + ij i  (38)

In practice, the equation is applied iteratively until the

minimum value of chisquare is reached.

In order to speed up the program, a further

approximation is made. The second derivative of chisquare

with respect to the parameters, Equation 35, involves the

second derivative of the fitting function with respect to the

'parameters. Since this term is multiplied by the difference

between the data value and the value of the fitting function,

48



it may be neglected if the functional value is close to the

data value. Then, the matrix takes the form:

N 1 f _f (39)

Jk CI 12 3aj 3ak

and its diagonal elements are positive. This second

approximation makes the result of Equation 38 even worse when

the initial guess is far from the minimum. This makes no

difference so long as Equation 38 steps closer to the minimum

each time it is applied. Since the vector 8 points toward

lower chisquare, Equation 38 will step downhill if the step

size is small enough and if it is in the direction of a.

To insure that Equation 38 always steFs downhill, the

inverse of a modified curvature matrix, a'jk defined as

k ={(1 + X)Otjk for j = k, X > 0 (40)
k jk for j # k

is used in it. Multiplying the diagonal elements of a by a

value greater than one has the effect of making the inverse

matrix smaller. This decreases the step size. Since only

the diagonal elements are affected by this factor, a large

value of X will cause the diagonal elements to dominate when

taking the inverse. Then, the inverse of a' is just the
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.' .matrix of the reciprocal of the diagonal elements of a' and

since its diagonal elements are positive, the diagonal

elements of the inverse will be positive. This has the

effect of making the step in the general direction of 8.

Larger values of X are used to decrease the step size

*and point the step in the direction of the maximum decrease

in chisquare (usually used far from the minimum), whereas

small values of X effectively remove this modification from

the equations, allowing accurate matrix calculation of the

next step (usually used near a minimum). The value of X is

changed dynamically in the program as the fit proceeds. It

is multiplied by 10 if the previous attempted step was

unsuccesful in decreasing chisquare and the step is

reattempted. If the previous step successfully decreased

chisquare, the value of X is divided by 10 for the next step.

The program begins by asking the operator for an initial

value of the parameters. The program computes the gradient

of chisquare at this point and attempts to step away from

this point to a new point in the direction of reduced

chisquare. If the value of chisquare at the new point is the

same or larger than the value at the original point, the

attempted step was unsuccessful (i.e. uphill) and X is made

larger (to modify the size and direction of the step) and the

step from this point is tried again. If the value of

50
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chisquare at the new point is lower than the value at the

original point, the attempt step was successful (i.e.

downhill) and X is made smaller for the calculation of the

next step. The program continues stepping downhill until the

value of chisquare stops changing.

A possible form for the appearance of the parameter

space for a two parameter fitting function is shown in

Figure 13. The oval curves are constant chisquare contours.

Note that the computer steps three times to find the minimum.

Note also that there are two minima in the diagram. The

presence of multiple minima occurs fairly often, and some

effort must be made to find all of the minima. If more than

one minimum gives a good fit, other information must be

brought to bear in selecting one of them as the "correct"

fit.

The sharpness of the minimum and its uniqueness is a

function of the quality and amount of the data. Reducing the

random error in the data sharpens the minimum thereby

permitting a more precise determination of the variable

parameters. Reducing the systematic error in the data also

improves the fit and allows a more accurate determination of

the parameters. Taking more closely spaced data or taking

data over the widest possible range of the independent

variable (temperature in our case) ,'an increase the precision
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of the results even in the presence of systematic error. All

of these strategies have the effect of increasing the amount

of information that may be extracted from the data via the

fitting program.
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SECTION V

I PROVE':ENTS IN THE ,HEORY

For samples not too heavily doped, the true carrier

concentration in the sample may be obtained accurately by

solving the exact charge balance equation, but this is not

usually done because of calculational difficulties. Instead

the full equation is generally approximated by Equation 16.

This is an excellent approximation for a doped sample and it

only breaks down at high temperatures where mixed conduction

becomes important. Also, the distribution of carriers in the

bands is approximated using Boltzmann statistics, and

ordinarily this too is a good approximation. In the first

part of this section, the accuracy of these approximations

will be estimated.

Besides the approximations, there are a multitude of
:4

constants in the charge balance equation which must be

determined. We usually pick the concentrations (NAi and ND)

and ionization energy (EAi) of the impurities to be the

parameters varied in the fitting process, and so the density

of states in the band (Nv for the valence band), the

degeneracy of the bound states of the acceptors (gij), and

the binding energies of the excited states of the acceptors
4"

4,

( Ai J ) must be put in by hand. In the second part of this

section, these factors and the effect they have on the

5L4
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calculated carrier concentration for p-type samples will be

discussed.

Unfortunately, the Hall effect does not measure the true

carrier concentration in the sample, but measures the carrier

concentration divided by the Hall scattering factor, r. In

order to find the true concentration of impurities in the

sample the data must be corrected. The r-factor can be

calculated theoretically which includes some uncertainties,

it can be estimated by some measurements, and it can be

measured explicitly in others. In the last part of this,

section, improved estimates of the r-factor will be assessed.

1. APPROXIIATIONS

a. Mixed Conduction

To obtain the modified charge balance equation

(Equation 15) from the completely general form (Equation 14),

the concentration of electrons in the conduction band must be

neglected. This can be done if the concentration of

conduction electrons is much less than the concentration of

holes in the valence band. The maximum concentration of

holes is given by

Ai - ND. (41)

and the concentration of electrons is approximately
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(References 2 and 7)

n = vexp(.Eg/kT)/p, (L2)

c*,* .( 2

where E is energy band gap and N. is the density of states

in the conduction band, so the condition for the neglect of

the conduction electrons is

N c"Ivexp(_Eg/kT)/p << p. (43)

At low temperatures this inequality is well satisfied because

Eg >> EAi for any i, but as the temperature is increased

conduction electrons become important first for lightly doped

samples and only for heavily doped samples at the highest

temperatures (Reference 19). In Figure 14, the Hall data for

a high purity silicon sample is shown. Note the upward curve

of the data at the left side of the graph. Here, the sample

is making the transition to mixed conduction where both

electrons and holes carry current. This upward curve of the

data is indicative of the onset of mixed conduction and

whereas Equations 5 and 15 may be used to obtain the carrier

concentration at lower temperatures, Equations 1, 2 and 14

must be used in this high temperature region. In the absence

of this type of evidence for mixed conduction, the modified

charge balance equation describes the data very well.

56



4.4

0 4--

17-

+ +-+ ++

++

++

++

++

++

4.
. +

-4-

'.

;" +

-II' (

MONf¢/T (K )

* Figure 14. Carrier concentration versus 1000/T for a high purity p-type
silicon sample. These data show the effect of the transition
to intrinsic conduction at high temperature (left side of the
graph).
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b. Boltzmann Statistics

To obtain the form given in Equation 17 for the

function Oi, the distribution of holes in the valence band

was assumed to be described by Boltzmann statistics.

Boltzmann statistics assumes a simple exponential

distribution for the electron density and applies to

electrons only if their density is low enough so that they

are "nondegenerate" -- that is only if the Fermi-Dirac

distribution function may be approximated oy a simple

exponential. This is a good approximation so long as the

Fermi level, P, is in the band gap more than 3.5kT from the

edge of the valence band (Reference 7). In other words, the

Fermi distribution in the integral is expanded in the form

[1+exp((1-E)/kT)] - 1  = exp((E-)J)/kT) I [-exp((E-P)/kT)]J (44)

and the higher-order terms are neglected. This can be done

so long as the absolute value of the sum of the higher-order

terms is much much less than the first term:

= [_exp((E_ )/kT)]J << 1. (45)

The maximum deviation from Boltzmann statistics will occur

for holes with energies at the edge of the valence band,

0, and the most important term in the sum in Inequality

* 45 is the first one. For the condition stated by Blakemore,
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1.= 3.5kT, these terms represent at most a 3% correction at

the edge of the band. Since the distribution function is

integrated over energy, the error in the integral (which is

the important number) is only about 1% (References 7 and 20).

This condition is hardest to satisfy for shallow dopants

which can bring the Fermi level close to the band edge. At

low temperatures, the Fermi level locks onto the ionization

energy of the shallowest partially compensated acceptor.

This is always many many times kT at these temperatures. At

the highest temperatures, the Fermi level moves toward the

middle of the band gap as the sample begins to experience

mixed conduction and it again is many times kT from the edge

of the band. It is only at intermediate temperatures that

problems can develop when the Fermi level position relative

to the band edge is one half of the ionization energy of the

deepest acceptor. If the deepest acceptor is rather shallow,

the Fermi level can approach the band edge to within a

distance of kT. For a silicon sample heavily doped (density

on the order of 10 1 8 cm- 3 ) with boron, a shallow acceptor, the

condition v > 3.5kT can break down if the exhaustion region

is not entered by 73K. Actually, this requirement is much

too stringent and the exhaustion region can be delayed to

temperatures as high as room temperature before the error in

the carrier concentration becomes greater than 15.

2. VALUES 0 CONSTANTS
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a. Density of States Effective Mass

The density of states in the valence band, NV must

be calculated and put into the charge balance equation. The

only factor in it that must be handled with special care is

the temperature dependent density of states effective mass.

Recently it has been calculated for the valence band of

silicon (Reference 21) and a formula has been published

(Reference 22). Since the density of states is proportional

to the temperature dependent density of states effective mass

to the three-halves power, that factor is given in Table 3

and plotted in Figure 15 along with an earlier calculation by

Barber (Reference 23). The greatest difference between the

two curves occurs at the highest temperatures, but because

the carrier concentration is not dependent on the density of

states in the exhaustion region, the greatest effect on the

carrier concentration occurs in the intermediate temperature

region. The calculation of R. G. Humphreys (Reference 24)

also shows a larger effective mass than that given by Barber.

Using a different effective mass, then, changes the

shape of the carrier concentration curve. In comparison with

the Barber mass, the new effective mass raises the calculated

carrier concentration slightly at the upper end of the

intermediate temperature region, this difference being

greatest in samples which enter the exhaustion region at the

highest temperatures. The effective mass now used for data
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Figure 15. Density of states effective mass to the three-halves powr
versus temperature
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TABLE 3

DENSITY OF STATES EFFECTIVE ;'ASS FACTOR

T (m /mo)1.5 T (m /mo 1.5

(K) P (K)
0 0.444 210 1.072

10 0.460 220 1.094
20 0.481 230 1.115
30 0.507 240 1.134
40 0.538 250 1.153
50 0.573 260 1.171
60 0.610 270 1.189
70 0.647 280 1.206
80 0.685 290 1.2c
90 0.722 300 1.237

100 0.758 310 1.251
110 0.793 320 1.266
120 0.827 330 1.279
130 0.859 340 1.292
140 0.890 350 1.304
150 0.920 360 1.317
160 0.948 370 1.328
170 0.975 380 1.340
180 1.001 390 1.350
190 1.026 400 1.361
200 1.050 410 1.371

fitting is well-known and reliable, and no further refinement

appears to be necessary at this time since it is not limiting

the accuracy of the analysis.

b. Excited States and Degeneracy

". The excited states of the impurity contribute to

the denominator of the formula for the function 01, Equation

17. Their contribution may be assessed by rewriting Equation

17 in terms of an effective temperature dependent degeneracy

factor, Gi(T), in analogy with Equation 18:
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0i =  Nvexp(-EAi/kT)/Gi(T). (46)

Then, the effective degeneracy factor may be computed from

Gi(T) = gijexp((EAij-EAio)/kT), (47)

where the sum is taken over all of the bound states of the

impurity (including the ground state, j = 0) and EAi = EAiO

is the energy of the ground state and EAij is the energy of

the jth excited state.

To apply Equation 47 to the case of the group-Ill

acceptors in silicon, the gtj and EAiJ must be known for all

of the bound states for each acceptor. For the ground state,

j 0 0, the degeneracy is taken to be 4 and the binding energy

is taken from the experiment of Fischer and Rome (Reference

25). For j > 0, the excited state energies and degeneracies

are assumed to be the same for all acceptors, and the boron

energy values (Reference 25) are used because the carrier

concentration in boron doped silicon samples is most affected

by the presence of the excited states. Degeneracies were

assigned using the results of Lipari et. al. (Reference 26)

and using relative intensity information (Reference 27).

The effective degeneracy factor is plotted in Figure 16

as a function of temperature for the four acceptors: boron,
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Figure 17. Carrier concentration data versus l000/T for a silicon sample

heavily doped with boron. The lower curve was obtained by
fitting the data using a temperature dependent effective
degeneracy factor that included 22 odd parity excited states

and 5 even parity excited states. The tipper curve was

calculated with the same boron concentration (6.25 x 
017 /cm 3

as for the lower curve but with a fixed degeneracy factor of 4.
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aluminum, gallium, and indium. The ground state and 22 odd

parity excited states reported by Fischer and Rome were

included in the sum on the right hand side of Equation 47.

Note that the effect of the excited states is greatest for

the shallowest acceptor (boron) because they are closest to

the ground state in boron.

In Figure 17, two curves are shown on the same graph as

data taken on a boron doped sample. both curves are

calculated assuming the same impurity concentrations, but the

lower curve includes the effect of 27 excited states (22 odd

parity and 5 even parity corrected to the ionization energies

of Fischer and Rome (References 26 and 28)). Note that the

effect of the excited states is to reduce the calculated

carrier concentration at the highest temperatures with the

greatest percent effect occurring near the bend that

separates the exhaustion region from the intermediate

temperature region. Because this bend shifts to higher

temperatures as the impurity concentration is increased, the

effect of the excited states is most important for heavily

doped samples.

The excited states now known and used give an effective

degeneracy that is completely adequate for a11 but very

heavily doped samples such as the one shown in figure 17.

Inclusion of excited states is essential for the reasonably
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good fit in Figure 17 but the data in this figure need more

excited states if the fit is to be improved further.

Additional experimental measurements are therefore required

to reveal the complete excited state structure, such as

higher resolution optical absorption, photo-thermal

ionization and Raman scattering to identify the even parity

states.

3. ESTIMATES 0:-' HE HALL SCATfERING FACTOR

The approximation r = I for the Hall scattering factor

(or r-factor) is known to be a poor one because fits using it

give incorrect values for the impurity ionization energy

(Reference 17) and the impurity concentration (References 17

and 18). Since the value of r depends on the dominant

scattering mechanisms in the sample, high purity samples,

whose carrier mobility is dominated by acoustic and optical

phonon scattering, will all have the same Hall scattering

factor as a function of temperature whereas highly doped

samples will have r-factors different from high purity

samples and different from one another because their mobility

is strongly influenced by ionized and neutral impurity
'p

scattering as well.

a. High-Purity Hall Scattering Factor

The earliest estimate of the high-purity r-factor was

provided by Barry A. Green (Reference )) and was based on

(-1
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his supposition that the temperature dependence of the

carrier concentration of high- purity samples in the

exhaustion region is caused by the temperature dependence of

the r-factor. His estimate,

0.6
r = 0.83 + 0.04(-/1K) , (48)

was designed to have the proper temperature dependence in the

range from 50 to 101 K, and therefore the first constant in

the fornula, 0.83, is only approximate. In Figure 18, this

r-factor is plotted along with results of calculations by

Szmulowicz and .:adarasz (Reference 30) which are shown for

comparison. These calculations include the scattering

effects of only the acoustic phonons which dominate the

mobility in high purity samples up to about lOOK.

A recent experimental estimate of the high purity

r-factor has been provided by !itchel and Hemenger (Reference

31) who fit their data on the r-factor in the range 20-50K.

Fhey give the formula

0.082
5" r = 0.35(T/1K) ( 9)

which is plotted in figure 19 over an extended temperature

range. Once again, the calculated r-factor of Szmulowicz and

':adarasz is shown for comparison. These estimates show not

only an increase of the Hall scattering factor in the region

d
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from 20 to lOOK, but taken together, also indicate a possible

upward curvature in the data.

.ore recent calculations by Szmulowicz (Reference 32)

includes optical phonon scattering in addition to acoustic

phonon scattering. The r-factor calculated by Szmulowicz is

shown in Figure 20 along with the data from Mitchel and

Hemenger. This r-factor increases with T below 80K and also

has the upward curvature from 20 to 80K, is about 4% below

the data of Mitchel and Hemenger, and shows a peak below

lOOK. The peak in this r-factor at about 80K is inconsistent

with the earlier estimate of Green which showed no peak

within the range of his calculations up to lOOK, but it is

consistent with the calculation of Nakagawa and Zukotynski

kReference 33) which produces a peak near the same

temperature. Szmulowicz's calculation used one adjustable

parameter, the deformation potential, d which was chosen soO'

as to give a room temperature Hall mobility of 370 cm 2 /Vsec.

Reduction of this parameter moves the peak to higher

temperatures and raises the room temperature mobility. A

reduction of d even to zero, however, will rot move the peak0

very far above 1OOK while it raises the room temperature

mobility to unrealistically large values (Reference 32).

The carrier concentration data of A:itchel and Hemenger

or sample 1202-H was taken over a temperature range from 18
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to 100K at a fixed magnetic field strength of 1193 gauss, and

a computer fit of this data can give an indication of the

correctness of the r-factor. Unfortunately, at 1193 gauss,

the sample is in the high field limit ( WU T >> 1) at lowc

temperatures and is in the low field limit ( wi T << 1) atc

high temperatures. Thus, the r-factor

r = RH(O)/RH(o) (50)

cannot be applied to these data unless they are first

corrected to zero magnetic field strength. Besides the

temperature series, data was taken over a range of field

strengths on samples 1202-H and 4802-3H at fixed temperatures

from 20K to 60K giving an estimate of the correction to be

applied to the 1193 gauss data.

After the estimated correction was applied to the 1202-H

temperature series from 18 to 100K, two r-factors were used

to fit the data and the results are shown in Table 4. The

Szmulowicz r-factor was parametrized using the formula

r = 0.71739 + 0.28429f(x)exp(-1.221025x), (51)

where

f(x) = (1 + 0.43366x + 1.3219x 2 )/(I - 0.97429x + 0.46293x 2 )
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TABLE 4

RESULTS FRO:.! FITS TO DATA FRO"i SA:.PLE 1202-H

27 Data Points 26 Data Points
18 to lOOK 18 to 90::

R-Factor Eb Reduced EB Reduced

(eV) Chisquare (eV) Chisquare

Szmulowicz 0.04492 0.71 0.04491 o.61

r : 1 0.04480 0.64 0.04471 0.61

and

x = I/8O.526634K.

It gives very slightly poorer results than r 1 mainly

because of its peak near 80!'. If the highest temperature

data point at 130K is eliminated, it gives a reduced

chisquare as good as that produced by r = I. Fits using the

Szmulowicz r-factor might be improved if the peak could be

moved to higher temperatures. On the other hand, the data

may contain errors due to the experimental limitation of

*nagnetic field strength that only permitted a full field

series to be taken up to 60K, which is the region dominated

by acoustic phonon scattering, and this result was

extrapolated to "correct" the data up to lOOK.

Our understanding of scattering and the temperature

dependence of the r-factor has improved dramatically over the
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last few years. The present situation still leaves some

questions that are hard to answer due to having data over

only a limited range and possibly some issues remaining in

the theory, such as the exact value for the optical

deformation potential. We do have, however, a temperature

dependent r-factor that agrees with the directly measured

values over the range 20-50K and correctly removes the

structure in the carrier concentration curve in the

exhaustion region. This represents significant progress.

b. Doped Sample Hall Scattering Factors

In doped samples, the r-factor situation is not nearly

as simple ;s it is in high purity samples. Unfortunately,

the calculation of Nakagawa and Zukotynski (Reference 33) has

not helped much because the results are not directly

comparable to experiment. Their graphs are plotted for the

case of a fixed (temperature independent) number of ionized

impurities in the sample. Actually, there is a great

variation in the nJber of ionized impurities in the sample

as the temperature changes, and that variation is strongly

affected by the nature and strength of doping as well as the

compensation. As a result, each sample has a unique

r-factor.

Early estimates of the r-factor for doped samples

concentrated on indium doped silicon where the need was
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greatest. In these samples, the exhaustion region is not

reached at the highest temperatures regularly measured

(3O0-40OK). The concentration of indium found in the Hall

aralysis fits for a sample was an inferred quantity which

could not be checked directly using the carrier concentration

in the exhaustion regic ,. R. Baron et al. (Reference 34)

* extended their measurements to much higher temperatures to

see the exhaustion region and found that the concentration of

irndium inferred from the lower temperature data did not agree

at all well with the value obtained directly from the

exhaustion region. Furthermore, they used C-V measurements

as a check on the indium concentration revealed in the

exhaustion regior and also found disagreement. They

concluded that the r-factor had a valie of about 0.7 at room

temperature and that it must rise as the temperature is

lowered. The slope of the r-factor may be estimated from the

incorrect value of the ionization energy for indium

determined from 'lall analysis.

..arry Green (Reference 35) used the results of Baron et

al. as well as hs own calculations of the r-factor for

i onized impurity, neutral impurity and phonon scattering to

present an estimate of the r-factor for indium doped samples.

d e improved and parameterized this estimate to produce the

"empirical r-factor"
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r = 0.54 + 1.22(T/50K)/(1 + (T/50K) 2). (52)

This empirical r-factor is plotted in Figure 21 along with

the Szmulowicz high purity r-factor for comparison. N ote

that Equation 52 peaks at a lower temperature (50K) and has a

more gentle high temperature slope than the high purity

r-factor as a result of the rapid increase in the number of

ionized impurity centers as the temperature is raised. This

is consistent with the graphs of Nakagawa and Zukotynski

(Reference 36).

A check on the empirical r-factor can be made by taking

data on indium-doped silicon samples over a wider temperature

range and seeing if the reduced indium concentration is

consistent with the value of the carrier concentration in the

exhaustion region. Indeed, high temperature data show a

lower carrier con.entration than that expected from a naive

extrapolation of the low temperature r = 1 data (References 9

and 34), and the empirical r-factor produces fits to the low

temperature data that are consistent with the high

temperature data (Reference 9).

Two other r-factors have also been developed

independently. 7he r-factor of Wucherer (Reference 37)

r = 0.61 + 0.489(l - (T/300:.)) (5.)
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was developed for gallium and indium doped samples. It lies

below the empirical r-factor above 40K and has approximately

the same slope between 120 and 200K. The r-factor of Holeman

and Humphreys (Reference 35) is also a linear function of

temperature. It is much lower than the empirical r-factor

and its lower slope matches the slope of the empirical

r-factor near room temperature.

Improved r-factors for doped samples must await a full

calculation involving all scattering mechanisms because the

high purity r-factor is only a rough guide to the value of

the r-factor for doped samples. The conduction of both doped

and high purity samples is dominated at high temperatures by

optical phonon scattering and it is in that temperature range

only where they could be expected to be similar. In

Figure 20, note that the two curves are, in fact, very close

to one another between 170 and 400K, but that they differ in

value and shape below this range.

Recent calculations (Reference 39) indicate that the

effects of ionized impurity scattering extend to much higher

temperatures than expected and that, in samples with low

compensation, neutral impurity scattering has considerably

more effect at low temperatures than previously supposed.
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